CSNV500 SERIES

Closed Loop Current Sensors

DESCRIPTION

The CSNV500 Series are Hall-effect, closed loop current sensors that use Honeywell's patented technology to bring the best combination of performance and reliability. They are non-intrusive and electrically isolated from the monitored circuit. This ensures a simple and reliable structure without loss of power to the monitored circuit. The CSNV500 Series are rated for a primary current measurement range of ±500 A DC. They are calibrated and temperature compensated for improved accuracy using multi-point temperature characterization.

DIAGNOSTIC FUNCTIONALITY/ CAN OUTPUT

The CAN output of the CSNV500 Series provides fault detection and communication capability. Also, the digital CAN communication is very immune to electrical interference. Examples of sensor and host system faults are as follows:

- Sensor fault
- Sensor communication error
- Supply voltage over range
- Supply voltage under range
- Current over range

CUSTOMIZATION

The CSNV500 Series may be customized to best meet application needs. Solutions may be tailored to exact specifications for improved time to market, lower total system costs and enhanced reliability. For technical assistance, we provide global engineering and service support for your needs.

DIFFERENTIATION

- Accuracy: Multi-point temperature characterization and calibration for improved accuracy over temperature range.
- Magnetic immunity: Closed loop configuration and optimized magnetic circuit allow for excellent performance in diverse magnetic environments.
- **Flexible:** Customizable on-board firmware to meet specific application requirements.

VALUE TO CUSTOMERS

- Accurate: Designed to enable precise battery state measurement for improved user experience.
- Ease of use: Magnetic immunity allows for easy integration into different magnetic environments.
- Easy system integration: CAN communication is transmitted using international road vehicle standard ISO 11898. CAN 2.0A is the default protocol, CAN 2.0B is available as a custom variant.

POTENTIAL INDUSTRIAL APPLICATIONS

- Current measurement for battery management systems in electrified vehicles (EV, HEV, PHEV, BEV)
- Current leakage detection and fault isolation in charging systems
- Current measurement in energy storage systems
- Fault detection in heavy industrial equipment

Honeywell 💹

CE

19179073

FEATURES

Honeywell

19179141

- Active closed loop current sensing using Hall-effect technology
- Utilizes proprietary Honeywell technology for temperature compensation
- High accuracy and low temperature drift
- Operating temperature of -40°C to 85°C [-40°F to 185°F]
- Digital output: CAN bus output with configurable ID
- Internal diagnostic function
- Different configuration options: Mounting type, baud rate, CAN ID
- UL and CE certifications; REACH and RoHS compliant

PORTFOLIO

Honeywell offers a variety of current sensors for potential use in many applications. To view the entire product portfolio, click here.

TABLE 1. ABSOLUTE MAXIMUM RATINGS ¹				
CHARACTERISTIC	SYMBOL	UNIT	PARAMETER	CONDITION
Load dump over voltage	Vs	V	32	400 mSec
Over voltage	Vs	V	24 20	10 min continuous
Reverse polarity	Vs	V	-24	10 min
Supply voltage: minimum maximum	Vs	V	7 18	_
CAN operation: supply voltage under range alarm, no measurement supply voltage over range alarm, no measurement	-	V	6 to 7 18 to 24	CAN continuous
Insulation resistance	IR	MΩ	>500	500 V DC at 1 min
Creepage distance	D _{Cp}	mm	7.5	-
Clearance	D _{Cl}	mm	7	_
RMS voltage: AC isolation voltage DC isolation voltage	-	kV	5 5	50 Hz, 1 min 1 min

TABLE 2. OPERATING CHARACTERISTICS IN NOMINAL RANGE (IPN)

CHARACTERISTIC	SYMBOL	UNIT	SPECIFICATION			
CHARACTERISTIC			MIN.	TYP.	MAX.	CONDITION
Primary current, nominal measuring range (DC)	I _{PN}	А	-500	-	500	full temperature range
Supply voltage	V_{S}	V	7	12	18	full accuracy
Supply voltage hysteresis: maximum minimum	V _{UP} V _{UP} V _{LOW}	V V V V	 	18.1 17.7 7.1 6.8	 	when V_s increases when V_s decreases when V_s increases when V_s decreases
Current consumption: at I _P = 0 A at I _P = 500 A	Ιc	mA		21 —	30 250	V _s = 12 V, T = 25°C V _s = 12 V, T = 25°C
Ambient operating temperature	T _a	°C	-40	-	85	temperature range with accuracy guaranteed
Total accuracy	X_{G}	%	-0.5	_	0.5	at FS, T = -40°C to 85° C, ±3 sigma
Error at $I_p = 0 A$ (offset current)	l _{os}	А	-0.2	-	0.2	T = -40° C to 85° C, ± 3 sigma
Linearity	εL	⁰∕₀	-	±0.1	_	room temperature
Temperature coefficient of G	TCG	ppm/°C	-	10	-	-

TABLE 3. MECHANICAL CHARACTERISTICS		
CATALOG LISTING	DESCRIPTION	
Housing material	Plastic PBT+ GF30%	
Mounting screw	M6, torque max. 3 N m	

TABLE 4. CANBUS CHARACTERISTICS ^{1, 2, 3}								
MESSAGE DESCRIPTION	CAN ID	DATA LENGTH	MESSAGE LAUNCH TYPE	SIGNAL DESCRIPTION	SIGNAL NAME	START BIT	LENGTH	
					l _p value: 80000000h = 0 mA 7FFFFFFh = -1 mA 80000001h = 1 mA	IP_VALUE	24	32
Primary Cyclic	Error information	ERROR_INFORMATION	32	7				
current lp (mA)	See Figure 1	8 bytes	transmitted message 10 mSec cycle.	message	message	age Error indication (1 bit):	39	1
		Fixed to O	VACANT_DATA_2BYTES	48	16			
				CRC-8 POLY: 8 + X2 + X + 1	CRC_8	56	8	

¹CANBUS speed: Refer to Figure 1. ²CAN oscillator tolerance: 0.3125%.

³Byte order: big endian (Motorola).

TABLE 5. DIAGNOSTIC TROUBLE CODES				
FAILURE MODE	I _P VALUE	ERROR INDICATION	ERROR INFORMATION	
Flash CRC error	FFFF FFFFh	1	0x48	
Primary current overrange	FFFF FFFFh	1	0x49	
Primary current measurement error	FFFF FFFFh	1	0x50	
Internal LUT error	FFFF FFFFh	1	0x51	
Power minimum limit	FFFF FFFFh	1	0x54	
Power maximum limit	FFFF FFFFh	1	0x55	

TABLE 6. ORDER GUIDE				
CATALOG LISTING	DESCRIPTION			
CSNV500M-121	CSNV500 Series Hall-based closed loop current sensors, 500 A, through-hole, 250 k baud rate, 3C1 CAN ID			
CSNV500M-122	CSNV500 Series Hall-based closed loop current sensors, 500 A, through-hole, 250 k baud rate, 3C2 CAN ID			
CSNV500M-151	CSNV500 Series Hall-based closed loop current sensors, 500 A, through-hole, 500 k baud rate, 3C1 CAN ID			
CSNV500M-152	CSNV500 Series Hall-based closed loop current sensors, 500 A, through-hole, 500 k baud rate, 3C2 CAN ID			
CSNV500M-159	CSNV500 Series Hall-based closed loop current sensors, 500 A, through-hole, 500 k baud rate, 3C0 CAN ID			
CSNV500N-152	CSNV500 Series Hall-based closed loop current sensors, 500 A, through-hole with metal bushing, 12 V supply, 500 k baud rate, 3C2 CAN ID			

FIGURE 1. NOMENCLATURE

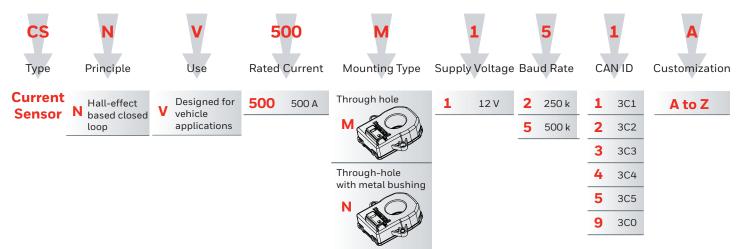
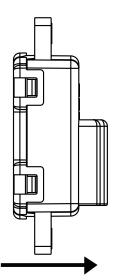
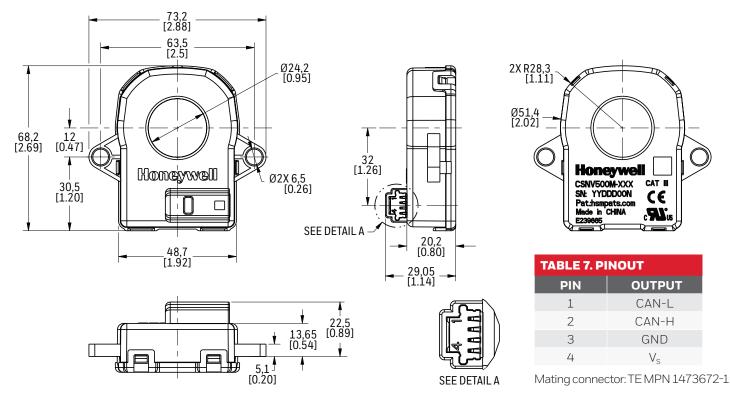
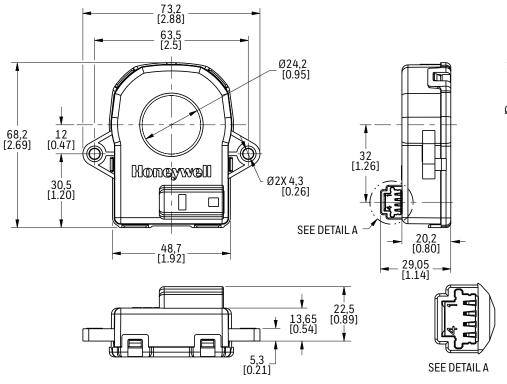
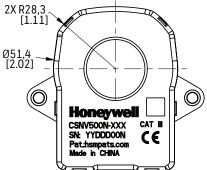




FIGURE 2. POSITIVE PRIMARY CURRENT DIRECTION (POLARITY) Application condition: Pollution degree PD2




FIGURE 3. DIMENSIONAL DRAWINGS (FOR REFERENCE ONLY: MM/[IN])

Mounting type M: Through-hole

Mounting type N: Through-hole with metal bushing

TABLE 8. PINOUT		
OUTPUT		
CAN-L		
CAN-H		
GND		
Vs		

Mating connector: TE MPN 1473672-1

TABLE 9. EMC TEST SPECIFICATIONS		
TEST	STANDARD	PROCEDURE
CISPR 25 Conducted RF Emissions - Voltage on Supply Lines	CISPR25	According to CISPR 25:2008 Commission Form of Testing
CISPR 25 Conducted RF Emissions - Voltage on Supply Lines	CISPR25	According to CISPR 25:2008 Commission Form of Testing
CISPR 25 Radiated Emissions	CISPR25	According to CISPR 25:2008 Commission Form of Testing
Bulk Current Injection (BCI) Test	ISO 11452-4	According to ISO 11452-4
ALSE with a Ground Plane	ISO 11452-2	According to ISO 11452-2
Transient Disturbances Conducted along Supply Lines	ISO 7637-2	According to ISO 7637-2
Transient Disturbances Conducted along I/O or Sensor Lines	ISO 7637-3	According to ISO 7637-3
Immunity to Magnetic Field	ISO 11452-8	According to ISO 11452-8
Handling Test	—	See "Electrostatic Discharge"
Operating Test	—	See "Electrostatic Discharge"
Electrostatic Discharge	ISO 10605	Unpowered direct contact discharge: ±4 kV, ±8 kV Unpowered air discharge: ±8 kV, ±15 kV Powered-up direct contact discharge: ±4 kV Powered-up air discharge: ±8 kV
Impulse Noise Test	—	_
Fast transient Noise Test	—	2kV Power port, $1kV$ CAN signal and control port
Radio Frequency Electromagnetic Field	IEC 61000-4-3	10 V/m (80 MHz to 1 GHz), 3 V/m (1.4 GHz to 2 GHz), 1 V/m (2.0 GHz to 2.7 GHz)
Fast Transients Bursts Susceptibility Test	IEC 61000-4-4	2kV Power port, $1kV$ CAN signal and control port
Radio Frequency Continuous Conducted	IEC 61000-4-6	0.15 MHz to 80 MHz, 3 V 80% AM (1 kHz)
Radio Frequency Magnetic Field	IEC 61000-4-8	30 A/M
Radiated Disturbance (3M semi-anechoic chamber)	CISPR-11	Group 1, Class A

TABLE 10. ENVIRONMENTAL TEST SPECI	FICATIONS	
TEST	STANDARD	PROCEDURE
Shipping/Storage Temperature Exposure	—	Not tested. Covered by low and high temperature operating test.
Low Temperature Operating Endurance	ISO16750-4	120 hr at -40°C, power on with 100 A primary current.
High Temperature Operating Endurance	ISO16750-4	$85^{\circ}\text{C}, 6000$ hr, power on with 100 A primary current. Performance test before and after test only at 25°C and V_{s} nom.
Powered Thermal Cycle Endurance	ISO16750-4	8 hr at 120 cycles, 960 hr. Performance test before and after test only at 25°C and $\rm V_{S}$ nom.
Thermal Shock	IEC60068-2-14	-40°C (30 min soak)/85°C (30 min soak), 250 cycles
Thermal Humidity Cycle	IEC 60068-2-38	240 hr, -10° C/65°C, 93% humidity between rise in temperature and constant temperature zone, 80% humidity in drop temperature zone. Performance test before and after test only at 25°C and V _s nom.
High Temperature and Humidity Endurance	IEC60068-2-67	$85^{\circ}\text{C}, 85\%$ humidity, 1000 hr, power on with 100 A primary current. Performance test before and after test only at 25°C and V_{s} nom.
Vibration	IEC60068-2-64	5 Hz to 2000 Hz, 20 hr/axis, 3 axis with –40°C/85°C temperature cycle during test. Product power on with 100 A primary current. Performance test before and after test only at 25°C and V_s nom.
Mechanical Shock	ISO16750-3	500 m/s, 2,20 each direction (60 total), half sine pulse. Product power on with 100 A primary current. Performance test before and after test only at 25°C and V _s nom.
Package Drop	ISTA-1A or GB/T 4857.5	With final packaging, drop in direction at 1 corner, 3 edge, 4 face ≥ total 9 drops, 1 m on concrete floor.
Handling Drop	ISO 16750-3	1st fall of each DUT at a different dimensional axis, 2nd fall with the given DUT at the same dimensional axis but on the opposite side of the housing, from 1 m on concrete floor. Performance test before and after test only at 25°C and $\rm V_S$ nom.
Dust (and other Solid Intrusion)	ISO20653	IP category: 4
Water Intrusion	_	Not tested. IP category: 0. Not protected.
Dew Formation Test	-	_
Mixed Flowing Gas	_	Not tested.
Salt Fog	ISO16750-4 or GB/T2423.17	5% salt water solution, 96 hr at 35°C. Performance test before and after test only at 25°C and $V_{\rm s}$ nom.
Chemical Exposure (outside cabin compartment)	-	Not tested.

TABLE 11. ELECTRICAL TEST SPECIFICATI	ONS	
TEST	STANDARD	PROCEDURE
Supply Voltage Range	ISO 16750-2	7 V to 18 V, at 25°C, with 100 A primary current
Supply Voltage Ripple	—	_
Supply Voltage Drop Out	_	-
Supply Voltage Dips	—	_
Slow Decrease and Increase of Supply Voltage	ISO 16750-2	Power supply changes from 18 V to 0 V with 0.5 V \pm 0.1 V step. At any step, power supply maintain 1 min. Power supply changes from 0 V to 18 V with 0.5 V \pm 0.1 V step. At any step, power supply maintain 1 min. Performance test before and after test only at 25°C and V _s nom.
Defective Regulation (full-fielded alternator)	_	-
Jump Start	-	Refer to "Overvoltage".
Load Dump	—	32 V, 400 mSec, 5 pulses
Overvoltage	ISO 16750-2	18 V, 60 min at $85^{o}\text{C}, 24$ V for 10 min at 25^{o}C
Reverse Supply Voltage	ISO 16750-2	-50 V, 10 min
Superimposed Alternating Voltage	ISO 16750-2	Conduct test as per ISO 16750-2 4.4. Test voltage US max 18 V for UN = 12 V systems, AC voltage (sinusoidal), severity 2, UPP = 4 V. Performance test before and after test only at 25° C and V _s nom.
Discontinuities in Supply Voltage	ISO 16750-2	Conduct test as per ISO 16750-2 4.6. Momentary drop in supply voltage reset behavior at voltage drop starting profile.
Immunity to Short Circuits in the Supply Voltage Input and Load Output Lines	-	See "Short circuit protection".
Immunity to Short Circuits in I/O Signal Lines	_	See "Short circuit protection".
Short Circuit Protection	ISO 16750-2	Sensor supply of 18 Vdc and 24 Vdc. Connect CAN-H and GND and hold for 60 s. Connect CAN-L and GND and hold for 60 s. Connect CAN-H and V_s and hold for 60 s. Connect CAN-L and V_s and hold for 60 s. Performance test before and after test only at 25°C and V_s nom.
Insulation Resistance	ISO 16750-2	Test voltage: 500 Vdc ± 10 Vdc between primary bar and the short-circuited secondary circuit. Test duration: 60 s, insulation resistance ${}^{\scriptscriptstyle 2}500M\Omega$
AC Dielectric Voltage Test	IEC60664-1	Test voltage: 5000 Vac, test voltage frequency: 50 Hz to 60 Hz, test duration: 60 s, leakage current ≤1 mA
DC Dielectric Voltage Test	IEC60664-1	Test voltage: 5000 Vdc, test duration: 60, leakage current ≤1 mA
High Current Transient Shock Test	_	Product power on with 12 V supply voltage. Monitor product CAN bus output and power supply current. Apply primary transient current shock at 2000 A, 5000 A, 7000 A, 9000 A, 10000 A Performance test before and after test only at 25°C and V_s nom.

ADDITIONAL MATERIALS

The following associated literature is available at sps.honeywell.com/ast:

- Product range guide
- Installation drawings

NOTICE PRELIMINARY DOCUMENTATION

The information contained in this document is preliminary and for reference only. Preliminary means that the product described has not been or is currently being formally tested. Specifications are subject to change without notice. Reliance on the information contained herein is at the reader's own risk.

FOR MORE INFORMATION

Honeywell services its customers through a worldwide network of sales offices and distributors. For application assistance, current specifications, pricing or the nearest Authorized Distributor, visit our website or call:

USA/Canada	+1 302 613 4491
Latin America	+1 305 805 8188
Europe	+44 1344 238258
Japan	+81 (0) 3-6730-7152
Singapore	+65 6355 2828
Greater China	+86 4006396841

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship during the applicable warranty period. Honeywell's standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgment or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items that Honeywell, in its sole discretion, finds defective.

The foregoing is buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While Honeywell may provide application assistance personally, through our literature and the Honeywell web site, it is buyer's sole responsibility to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this writing. However, Honeywell assumes no responsibility for its use.

A WARNING PERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

A WARNING MISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

Honeywell

Advanced Sensing Technologies

830 East Arapaho Road Richardson, TX 75081 sps.honeywell.com/ast

Honeywell